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The divalent calcium cation Ca2+ is used as a major signaling molecule during cell signal
transduction to regulate energy output, cellular metabolism, and phenotype. The basis to the
signaling role of Ca2+ is an intricate network of cellular channels and transporters that allow a
low resting concentration of Ca2+ in the cytosol of the cell (lCa2+1) but that are also coupled to
major dynamic and rapidly exchanging stores. This enables extracellular signals from hormones
and growth factors to be transduced as ICa2+li spikes that are amplitude and frequency
encoded. There is considerable evidence that a number of toxic environmental chemicals target
these Ca2+ signaling processes, alter them, and induce cell death by apoptosis. Two major
pathways for apoptosis will be considered. The first one involves Ca2+-mediated expression of
ligands that bind to and activate death receptors such as CD95 (Fas, APO-1). In the second
pathway, Ca2+ has a direct toxic effect and its primary targets include the mitochondria and the
endoplasmic reticulum (ER). Mitochondria may respond to an apoptotic Ca2+ signal by the
selective release of cytochrome c or through enhanced production of reactive oxygen species
and opening of an inner mitochondrial membrane pore. Toxic agents such as the environmental
pollutant tributyltin or the natural plant product thapsigargin, which deplete the ER Ca2+ stores,
will induce as a direct result of this effect the opening of plasma membrane Ca2+ channels and
an ER stress response. In contrast, under some conditions, Ca2+ signals may be cytoprotective
and antagonize the apoptotic machinery. - Environ Health Perspect 1 07(Suppl 1 ):25-35 (1999).
http://ehpnet1.niehs.nih.gov/docs/1999/Suppl-1/25-35kass/abstracthtml
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The divalent calcium cation Ca2+ has a
unique position among cellular ions in
higher organisms. In its insoluble form, it is
the major structural constituent of bones
and teeth, whereas in its soluble form Ca2+
plays important roles such as membrane
stabilizer, cofactor for proteins, electric
charge carrier, and diffusible intracellular
messenger (1,2). These roles result partly
from the unusual distribution of soluble
Ca2+ in the intracellular and extracellular
environments and partly from the unique
ability of Ca2+ to interact with proteins.
The total Ca2+ concentration in extracellu-
lar biologic fluids such as blood serum
ranges from 1.6 to 2 mM (of which
approximately 50% is bound to proteins
and other constituents). Within cells, Ca2+
is bound primarily to phospholipids, pro-
teins, and nucleic acids or sequestered in
organelles; only 0.1% of the total cellular
Ca2+ content is found free in the cytosol.

Consequently, the cytosolic free Ca2+
concentration ([Ca2+]i) is kept around 0.1
pM (Figure 1); therefore, only a minute
fraction of the total cellular Ca2+ is available
for performing its function as charge carrier
or diffusible messenger.

The direct consequence of the unusual
distribution of Ca2+ in higher organisms is
that their cells are constantly exposed to an
extremely large electrochemical gradient
between extracellular and intracellular Ca2+
concentrations (mM versus sub-pM).
However, cells are equipped with sophisti-
cated transport and sequestration mecha-
nisms enabling them to carefully maintain
their Ca2+ levels. In addition, subtle changes
in Ca2+ transport kinetics allow cells to
rapidly alter [Ca2+] in both an amplitude-
and frequency-encoded manner to induce
controlled changes in metabolism and
cellular phenotype. It is also not surprising
that a perturbation of the mechanisms
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controlling cellular Ca2+ homeostasis and
Ca2+ signaling processes, either through
inherited genetic abnormalities or through
exposure to drugs or environmental agents,
is the basis for many diseases and other
pathologic conditions. This review summar-
izes recent progress in understanding how
alterations in Ca2+ signaling through drugs
and toxic environmental agents can affect
the survival and functioning of cells and,
hence, lead to conditions such as cancer,
diabetes, and other autoimmune diseases,
and neurodegeneration.

Regulation of Ca2+ in
Mammalian Cells
To keep from being flooded by Ca2+ from
the extracellular milieu, cells have acquired
during evolution sophisticated transport
mechanisms that carefully control access of
Ca2+ into the interior of a cell across the
plasma membrane and redistribution of
Ca2+ from the cytosol into intracellular
organelles (Figure 1) (2-5).

C(2+ Transport across
the Plasma Membrane
C2+ gains access into cells across the plasma
membrane primarily through a number of
channels, some of which are tight control by
receptors (receptor-operated Ca2' channels),
the potential across the plasma membrane
(voltage-gated Ca2+ channels) and the
content of intracellular Ca2+ stores (store-
operated Ca2+ channels), whereas others
appear to be nonselective leak channels (3).
(a2+ can also gain access into the interior of
cells in exchange for Na+ by way of the
plasma membrane sodium-calcium excha-
nger (6). To counteract the continuous
influx of Ca2+ into the cell, the plasma mem-
brane contains a Ca2+-ATPase-type pump
(PMCA) that uses ATP-dependent phos-
phorylation of an aspartate residue to
translocate Ca2+ from the cytosol to the
extracellular environment (7). In most
tissues this pump is activated by the Ca2+-
binding protein calmodulin, which enables it
to respond readily to increases in [Ca2%]
with an increased Ca2+ translocating activity.

Ca2 -Binding Protems
Once inside a cell, Ca2+ can either interact
with so-called Ca2+-binding proteins or
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become sequestered into endoplasmic
reticulum (ER), mitochondria, or nucleus.
An increasingly large number of proteins
have been ascribed to have Ca2+-binding
functions with varying binding affinities
and capacities for Ca2+ (2,4). Some of the
intracellular binding proteins such as
calmodulin act as Ca2+ receptors. Through
the Ca2+-protein interaction and resulting
conformational change within the target
protein, Ca2+ signals can be effectively
relayed and amplified. Other proteins
appear to act as Ca2+ storing devices (e.g.,
the calsequestrin and calreticulin families).

Intraceliular Ca2+ Sequtration
by Orgadles
The largest store of Ca2+ in cells is found
in the endoplasmic and sarcoplasmic retic-
ula (4,8), with local concentrations reaching
millimolar levels (9). Such high concentra-
tions are achieved within the ER through
the action of the sarco-endoplasmic reticula
Ca2+-ATPase-type pumps referred to as
SERCAs (4). Like their PMCA counter-
parts, SERCAs exist as different isoforms
depending on tissue of origin and use ATP

Ca2+

to translocate vectorially Ca2+ from the
cytosol into the ER.

It is well known that mitochondria
possess a high capacity to sequester Ca2+
(10); yet under physiologic conditions in
vivo, total mitochondrial Ca2+ levels and
free [Ca2+] reflect and parallel cytosolic
[Ca2+] (8,11,12). However, under a patho-
logic situation in which cells are exposed to
high levels of Ca2+, mitochondria have been
found to start sequestering significant
amounts of Ca2+ (13,14). Mitochondria
take up Ca2+ electrophoretically through
a uniport transporter. Release of Ca2+ is
accomplished by three different routes: -
a) a reversal of the uniporter, b) an Na+-
dependent (or independent) exchanger, and
c) through an inner mitochondrial mem-
brane pore that is involved in a phenome-
non known as inner mitochondrial
membrane permeability transition.

The transport of Ca2+ across the
nuclear membrane has been the subject of
much controversy [for example (15,16)].
Ca2+ must gain access to the nucleus to
alter the activity of several transcription
factors as part of the phenotypic effects of
Ca2+ signaling, and reports (17,18) have
shown that a Ca2+ wave initiated in one
part of the cytosol of a cell will readily
move across the nucleus. In contrast, other
laboratories, including our own, have

Cal2

shown that the movement of Ca2+ across
the nuclear membrane may be restricted.
Thus, despite the observation that even
proteins readily permeate the nuclear
membrane because of the presence of
nuclear pores (19), the movement of Ca2+
across the nuclear envelope has been
reported to require a SERCA-like pump
(20). However, it remains unclear whether
this active transport of Ca2+ is at the level
of the pores or the envelope.

Ca2+ Signaling in
Mammalian Cells
The presence in cells of intracellular Ca2+
stores, particularly within the ER, that are
in rapid equilibrium with the cytosol is
the basis of the Ca2+ signaling machinery.
Mammalian cells respond to a complex
array of phosphorylation events and dif-
fusible messenger generation triggered by
numerous hormones and growth factors
with the production of controlled
increases in [Ca2+] i. These increases result
from the combination of Ca2+ release
from intracellular stores in response to
either the diffusible messenger inositol
1,4,5-trisphosphate (InsP3) or a Ca2+ spike
(Ca2+-induced Ca2+ release [CICR]) and
Ca2+ influx across the plasma membrane
(Figure 2) (21). [Ca2+] i is often observed to
rapidly rise in one particular area within a

9
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Figure 1. Schematic representation of the distribution
of Ca2+ in cells. Abbreviations: ER, endoplasmic reticu-
lum; M, mitochondria; N, nucleus, SERCA, sarcoplas-
mic-endoplasmic reticulum Ca2+-ATPase. Two major
routes for Ca2+ entry into cells exist, through Ca2+
channels (1) or in exchange for Na+ via the sodium-cal-
cium exchanger (2). Once inside the cell, Ca2+ can be
translocated back to the extracellular environment, pri-
marily by the action of the plasma membrane Ca2+-
ATPase (3) but also by the sodium-calcium exchanger
(2). In addition, Ca2+ will interact with Ca2+-binding
proteins or become sequestered by the ER, M and N.
The ER contains the SERCA, which translocates Ca2+
from the cytosol into the ER lumen (4), whereas mito-
chondria take up Ca2+ through their membrane poten-
tial (5). Further details are discussed in the text.

SERCA

cab21
r1

Figure 2 Ca2+ signaling in mammalian cells. Ca2+ signaling is initiated by the interaction of H, neurotransmitters
or GF with their specific receptors. Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; ER,
endoplasmic reticulum; G, G protein; GF, growth factor; H, hormones; InsP3, inositol 1,4,5-triphosphate; PLC, phos-
pholipase C; R, receptor; SERCA, sarcoplasmic-endoplasmic reticulum Ca2+-ATPase. These receptors may be G
protein coupled and activate PLC through the a subunit of the G protein or through direct coupling in the case of
tyrosine kinase receptors for a number of growth factors. The action of PLC on phosphatidylinositol 4,5-bisphos-
phate leads to the formation of the diffusible messenger InsP3 and the protein kinase C activator diacylglycerol
(not shown). InsP3 binds to its receptor located on the ER and opens a channel resulting in the discharge of ER Ca2+
into the cytosol. This in turn produces a decrease in ER Ca2+ content that is recognized by a yet poorly understood
mechanism that triggers the opening of Ca2+ channels located in the plasma membrane and Ca2+ influx into the
cell. The inset is a schematic representation of the changes in cytosolic Ca2+ concentration during Ca2+ signaling.
Note that the increase in Ca2+ often occurs as a repetitive event with a defined amplitude and periodicity.
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cell and then to rapidly spread as a Ca2+
wave across the entire cell. In the continu-
ous presence of receptor agonist, the Ca2+
wave is often repeated at defined intervals,
producing [Ca2+]i oscillations. This is now
viewed as a mechanism for providing the
cell with a Ca2+ signal, the frequency and
amplitude encoding of which depends on
the intensity and nature of the stimulus.
The cell appears to benefit in several ways
from this type of Ca2+ signaling. First, the
oscillating nature of the [Ca2+] allows a
graded response. This is best exemplified
by the enzyme Ca2+/calmodulin kinase II,
in which the kinase recruits increasing
numbers of calmodulin molecules with
increasing [Ca2+] i oscillatory frequency
until the enzyme becomes fully active (22).
A second important facet of the oscillatory
nature of Ca2+ signals is that it allows the
signals to be relayed more efficiently into
mitochondria (12). Finally, it is important
to remember that a prolonged elevation of
[Ca2+], will have detrimental effects on cell
survival which leads to cell death by apop-
tosis or necrosis (23,24). Therefore, the
frequency encoding of Ca2+ signals allows
physiologic responses to occur without
compromising cell survival.

The molecular basis of the Ca2+ oscilla-
tions has been the subject of numerous spe-
cialized reviews [for example (5,21)] and
therefore will be only briefly summarized
here. The initiator of the Ca2+ wave is
InsP3, which is formed by the action of
phospholipase C (PLC) on the minor
plasma membrane phospholipid, phos-
phatidylinositol 4,5-bisphosphate; the other
product of this reaction is diacylglycerol, an
activator of protein kinase C isoenzymes
(Figure 2). Two major subfamilies of PLC
exist, namely PLCj3, whose members are
activated primarily by G protein coupled
receptors, and PLCy, whose members are
controlled by protein tyrosine kinase recep-
tors and protein tyrosine kinase-associated
receptors. InsP3, once formed, will readily
diffuse away from the site of formation to
bind to Ca2+-release receptor channels, the
inositol 1,4,5-trisphosphate receptors
(InsP3Rs) (4,25). Three forms of InsP3Rs
(types 1, 2, and 3) have been characterized
by cDNA cloning. Most cells possess at
least one form of InsP3R and many express
all three subtypes. InsP3Rs are localized
primarily on the ER (or specialized subareas
of ER) as tetramers of large subunits and
resemble in their structure and molecular
organization the ryanodine receptors, the
voltage- or Ca2+-sensing Ca2+-release
channels responsible for CICR (4).

The quantal discharge of the sequestered
Ca2+ from ER by the action of 1P3 that leads
to the formation of a Ca2+ wave can be
explained by a number of complex models
[for example (21)]. Once released into the
cytosol, Ca2+ may be recycled by re-uptake
into ER by the SERCAs, transient seques-
tration by mitochondria and extrusion from
the cell by the PMCAs. In fact, the latter
appears predominant in cells such as hepato-
cytes (26,27), and this explains why Ca2+
oscillations are only short lived in the
absence of extracellular Ca2+ [for example
(28)]. The refilling of ER stores therefore
requires replenishing; this is achieved
through a phenomenon known as store-
operated Ca2+ influx (29). Store-operated
Ca2+ influx, which was first coined capacita-
tive Ca2+ entry, was discovered through a
series of experiments conducted by Putney
and co-workers (30,31).

The essence of the system is that a
sensing mechanism is present in the ER (or
the portion associated with the InsP3-sensi-
tive Ca2+ store) that detects the decrease in
ER Ca2+ content caused by the discharge
into the cytosol through InsP3R channel
openings. This sensing mechanism then
sends a signal to plasma membrane chan-
nels that are distinct from classic receptor-
operated and voltage-gated channels and
that are highly specific for Ca2+ (Figure 2)
(29,32,33). Whether the signal for Ca2+
channel opening is a diffusible messenger
(Ca2+ influx factor, cGMP) or occurs
through direct coupling remains controver-
sial. An important point to note in this
context is that this signal may be long
lived, and therefore chemicals that inhibit

2,5-Di(tert-butyl)hydroquinone
thapsigargin

SERCAs such as thapsigargin and 2,5-
di(tert-butyl)hydroquinone (34,35) will
cause a prolonged stimulation of Ca2+
entry into cells as a result of ER Ca2+
release. This leads to a sustained elevation
of [Ca2+]i (Figure 3) and thereby to an
array of pathologic conditions.

Ca2+ and Cytotoxicity
Given the complexity of the regulation of
cellular Ca2+ and Ca2+-signaling processes,
it is not surprising that disruption of these
control mechanisms has been linked to the
pathogenesis of diseases and cytotoxic
events. Indeed, work from several labora-
tories including our own showed in the
1980s that a perturbation of Ca2+ home-
ostasis is a common and final event
responsible for drug-induced cell death
(23,36-40). The overall picture that
emerged from this work was that the per-
turbation of Ca2+ homeostasis was caused
by the inhibition of Ca2+ transport mecha-
nisms including the PMCAs and SERCAs
by the cytotoxic chemicals or their
metabolites. Consequently, the injured
cells are exposed to a prolonged elevation
of [Ca2%] that in turn activates several
catabolic processes catalyzed by Ca2+-acti-
vated proteases (calpains), phospholipases,
and endonucleases.
A confusion arose in our understanding

of chemical-induced cell death when in the
late 1980s it became clear that this type of
cell death could occur not only by necrosis
but also by another form of cell death
known as apoptosis. Apoptosis is a form of
programmed cell death occuring during
organogenesis and organ remodeling and

Cah2

Ca2b SERCA

Figure 3. Changes in cellular Ca2+ induced by SERCA inhibitors. Abbreviations: ER, endoplasmic reticulum; G, G
protein; PLC, phospholipase C; R, receptor; SERCA, sarcoplasmic-endoplasmic reticulum Ca2+-ATPase. The inhibi-
tion of SERCA by agents such as 2,5-di(tert-butyl)hydroquinone or thapsigargin results in the depletion of the ER
Ca2+ store. As discussed in the text, this is recognized by the cell and results in the opening of specific plasma
membrane Ca2+ channels. Unlike signaling through lnsP3 (Figure 2), SERCA inhibition often leads to a prolonged
Ca2+ influx response producing a sustained increase in the cytosolic Ca2+ concentration (inset) and, in many cell
types, death by apoptosis.
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in adult life to modulate the immune
system or to kill transformed and virally
infected cells (41-43). Cells undergoing
apoptosis show well-defined morphologic
and biochemical changes including cellular
and nuclear shrinkage, condensation, mar-
gination and fragmentation of chromatin,
changes in plasma membrane architecture,
and intracellular proteolysis (42,44,45).
Enormous progress in our understanding
of the molecular events involved in apopto-
sis has been achieved recently, and it is not
surprising that Ca2+ has been found to play
a pivotal role in this form of cell death.

Although necrosis and apoptosis
initially were described as two fundamen-
tally different forms by which a cell can die,
an intense and often confusing debate cur-
rently prevails about whether this position
is still tenable or whether we are dealing
with a continuum of overlapping mecha-
nisms of cell death (46-48). For instance,
toxic chemicals that generate oxidative
stress or induce a pathologic increase in cel-
lular calcium levels can kill their target cells
by either necrosis or apoptosis, depending
on the degree of exposure (40,46,48,49).
Several important features such as plasma
membrane blebbing and mitochondrial
damage are common to both apoptosis and
necrosis. Also, several reports have shown
that the product of the antiapoptotic gene
bcl-2 protects cells not only from apoptosis
but also from necrosis (50-53). Therefore,
the boundaries between apoptosis and
necrosis may not be as distinct as often
assumed. To add further to the confusion,
it is also clear that when apoptosis occurs at
an excessive level, the dying cells can no
longer be removed in an orderly fashion by
phagocytosis, which leads to cell degenera-
tion and inflammation. Consequently, the
investigating histopathologist is faced with
a picture of (secondary) necrosis even
though the underlying primary mechanism
of cell death was apoptosis (47,54). The
factors that determine whether a cell dies by
apoptosis rather than by necrosis remain
unclear, although, as discussed below,
recent evidence implicates mitochondria.

Ca2+ Is an Inducer
of Apoptosis
The first major biochemical event in
apoptosis to be reported was that glucocorti-
coid-triggered apoptosis of thymocytes
involved degradation of the nudear DNA to
nucleosomal- and oligonucleosomal-sized
fragments by a specific endonuclease (55).
When resolved by agarose gel electro-
phoresis, the nuclear DNA had a ladderlike

appearance. Shortly afterward, Cohen and
Duke (56) showed that calcium ions
induced in isolated thymocyte nuclei the
same pattern of DNA fragmentation
through the activation of a Ca2+- and Mg2+-
dependent endonuclease. This provided us
with the first mechanistic clue to the bio-
chemical events taking place during apopto-
sis. The subsequent dissection of the
mechanism of glucocorticoid-induced apop-
tosis revealed that extracellular Ca2+ was
necessary for cell death to occur (57). More
direct evidence for a causal relationship
between Ca2+ and apoptosis was presented
when it was found that the Ca2+ ionophore
A23187 could induce apoptosis in thymo-
cytes (58,59). These observations led to the
proposal of a model in which the Ca2+- and
Mg2+-dependent endonuclease is a universal
effector of apoptotic cell death through an
increase in [Ca2+] i.

The model, although very attractive,
was soon challenged when it became clear
that DNA degradation to oligonucleo-
somes is often a relatively late event (60)
in apoptosis or may even be completely
absent in some cases (61). In addition, the
cloning of the C. elegans gene ced-3 led to
identification of a novel family of cysteine
proteases (caspases) that cleave their
protein substrates at specific aspartate
residues. Caspases are now accepted to be
the general intracellular orchestrators of
apoptosis and are responsible for most if
not all biochemical and morphologic fea-
tures of apoptosis (62-66). This led to re-
investigation of how Ca2+ signals can
induce apoptosis and, not surprisingly,
recent evidence shows that caspases are the
effectors of Ca2+-induced apoptosis in the
same way as in other forms of apoptosis
(67-70).

Overall, two main mechanisms by
which Ca2+ can induce apoptosis must be
distinguished. In lymphocytes (and possibly
other cell types), the induction of apoptosis
upon B- or T-cell antigen receptor complex
stimulation requires Ca2+; in some cases it
can be caused by Ca2+ ionophores or thap-
sigargin. In this case, the Ca2+ signal acti-
vates the cells in a manner similar to that
triggered by T- or B-cell antigen receptor
complex activation. The ensuing apoptotic
response is the natural consequence of the
cell activation process rather than being due
to a direct apoptotic effect of Ca2+ alone.
Consequently, the apoptotic effect of Ca2+
should be regarded as indirect. In most
cases, however, Ca2+ will trigger apoptosis
in a manner that is directly related to a
change in cellular Ca2+ levels.

Ca2+_Induced Apoptosis:
Direct Mechanisms
To investigate the role of Ca2+ signaling in
apoptosis, we used the SERCA inhibitors
tBHQ and thapsigargin (71). By inhibit-
ing the pump responsible for translocating
Ca2+ from the cytosol into the ER, these
compounds induce rapid release of the ER
Ca2+ stores in the absence of InsP3 forma-
tion (34,35) and as a direct consequence of
ER Ca2+ pool depletion, also the store-
dependent Ca2' influx response (Figure 3)
(29,33,72). We found that thymocytes
exposed to thapsigargin or tBHQ rapidly
became apoptotic (71). The apoptotic
response was abrogated in the absence of
extracellular Ca2+. Incubating thymocytes
in nominally Ca2+-free medium (i.e., in the
absence of added Ca2+ but without the
need for Ca2+ chelators such as EGTA)
completely abrogated thapsigargin-induced
apoptosis. This demonstrates that in thy-
mocytes the apoptotic effect of SERCA
inhibitors depends strictly on Ca2+ influx
rather than the result of total cellular Ca2+
chelation or ER Ca2+ store depletion.
Using excess Ca2+ chelators is an approach
often adopted It is, however, limited by
nonspecific effects resulting from total cell
Ca2+ chelation (73).

SERCA inhibition is a mechanism
used by a number of toxic chemicals. We
found that the immunotoxic environmen-
tal contaminant tributyltin (TBT) induces
thymocyte apoptosis through this very
mechanism (74). TBT is a member of the
highly toxic organotin family and has been
extensively used in marine paints to

prevent barnacles from attaching to
marine vessels. Its use has raised much
concern because of its highly cytotoxic
properties, especially toward fish and
mammals, which induce thymocyte and
lymphocyte apoptosis (75,76). TBT
induces apoptosis by inhibiting SERCA,
which triggers release of ER Ca2+ and acti-
vation of the store-dependent Ca2+ influx.
As a result of the prolonged inhibition of
SERCA, the activation of the influx path-
way leads to a massive accumulation of
Ca2+, which is worsened by the additional
inhibition of the PMCA, and subsequent
death of thymocytes by apoptosis (Figure
4) (74). A similar mechanism has been
reported for organotin-induced apoptosis
of PC12 cells (77). Consequently, inap-
propriate use of the cell's Ca2+ signaling
machinery is an important mechanism by
which environmental toxins like TBT
induce apoptosis.
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Figure 4. Schematic representation of the events that
lead to apoptosis in thymocytes exposed to the environ-
mental contaminant tributyltin. ER, endoplasmic reticu-
lum; PMCA, plasma membrane Ca2+-ATPase; SERCA,
sarcoplasmic-endoplasmic reticulum Ca2+-ATPase;
TBT, tributylin. Details are discussed in the text.

Similarily, Ca2+ signaling processes may
be targeted by toxic metals to cause a range
of perturbations (78-82). For instance,
inorganic mercury opens L-type Ca2+ chan-
nels and produces a sustained elevation of
[Ca2+]j and death ofPC12 cells (82).

Our knowledge about the mechanism
by which an increase in [Ca2+]j leads to
apoptosis is still fragmentary. A likely tar-
get for Ca2' is the mitochondrion. As pre-
viously mentioned, mitochondria readily
accumulate Ca2+ from cytosol to transduce
the Ca2+ signal to a number of Ca2+_
activated dehydrogenases that participate
in energy production. Mitochondria have
also been postulated to play a role in
buffering cytosolic Ca2+ (10). Indeed,
exposing hepatocytes to SERCA inhibitors
results in the rapid accumulation of Ca2+
by mitochondria (14), and recent evidence
indicates that the spatial proximity
between mitochondria and ER Ca2+ stores
plays a critical role in this response (83).

Mitochondria and Apoptosis
Mitochondria are particularly vulnerable
and a number of apoptotic stimuli includ-
ing prooxidants and Ca2+ can induce a
stress response known as inner membrane
permeability transition. Mitochondrial per-
meability transition involves the opening of
a pore that is made of a large proteinaceous
complex comprising, among others, the
voltage-dependent anion channel (VDAC),
also known as porin, adenine nucleotide
translocator, mitochondrial cyclophilin D,
the peripheral benzodiazepine receptor,
hexokinase, creatine kinase, and possibly
also Bax (84-86). The pore complex has

been localized to the contact sites between
the inner and outer mitochondrial
membranes. However, the molecular details
of the association of the different compo-
nents of the pore are still unclear although
the conditions that trigger pore opening
have been well defined. The pore behaves as
a voltage-operated channel that becomes
activated by high-matrix Ca2 , oxidative
stress, pyridine nucleotide oxidation, thiol
oxidation, alkalinization, and low trans-
membrane potential. Initially, rapid and
stochastic opening and closing of the pore
is observed (87,88). This, however, rapidly
develops into persistent pore opening,
allowing not only Ca2+ but also low molec-
ular weight matrix components (Mr < 1500)
to escape rapidly from mitochondria (89).
At this stage the opening of the pore is still
reversible by agents such as cyclosporin A
(89). How the transition occurs from
an initially VDAC to a megachannel is
presently unclear.

Mitochondria and pore opening play
pivotal roles in cytotoxicity. We have pre-
viously reported that pore opening is an
important event in prooxidant injury in
hepatocytes (13). Pore opening occurred as
a result of enhanced Ca2+ sequestration by
and oxidative damage to the mitochondria.
Inhibiting pore opening with cyclosporin
A prevents or delays the onset of cell
death, depending on the type of prooxi-
dant used. In this experimental system of
prooxidant injury, cell death occurred very
rapidly with substantial cell swelling, sug-
gesting that the cells died by necrosis
rather than apoptosis.

There is no doubt that mitochondria
play an important role in apoptosis. Yet,
morphologically, they remain essentially
intact during the initial stages of apoptosis
(42,43,60). Similarily, mitochondria have
been reported to function normally during
the early stages of the process (90) even
though a decrease in mitochondrial trans-
membrane potential has been observed in
some cases (91). These observations suggest-
ing that mitochondria are spared during
apoptosis are difficult to reconcile with a
recently proposed model that the permeabil-
ity transition is a general mechanism of
apoptosis (91). Because of its nature, mito-
chondrial permeability transition occurs
with severe swelling and complete loss of
cellular energy (13,92,93). In fact, recent
work by Leist and co-workers (94) and
Tsujimoto (95) has demonstrated that the
apoptotic program necessitates cellular ATP,
and these authors have suggested that ATP
acts as a major decision switch between

apoptosis and necrosis. Furthermore, our
own results have shown that ATP is neces-
sary for nuclear chromatin condensation to
occur during apoptosis (96).

How apoptotic Ca2+ signals interact
with mitochondria is unclear. Release of ER
Ca2+ and stimulation of store-dependent
Ca2+ entry lead to the rapid accumulation of
the cation by mitochondria (14). If exces-
sive, the result is permeability transition, as
shown in isolated mitochondria (89) and
intact cells (97). Permeability transition
could occur through direct interaction with
the metal-binding site of the pore (89),
inhibition of respiration by NO (nitric
oxide) through Ca2+ activation of the mito-
chondrial NO synthase (98), oxidative stress
imposed by the loss of glutathione during
apoptosis (99,100), superoxide anion pro-
duction triggered as a result of cytochrome c
loss (101), or a combination of several of
the above events. However, Waring and
Beaver (97) have also shown that very low
concentrations of thapsigargin can induce
apoptosis in the absence of detectable
changes in mitochondrial morphology or
transmembrane potential.

An alternative explanation for the
contribution of mitochondria to apoptosis
is that apoptotic stimuli induce mito-
chondria to release cytochrome c into the
cytosol to activate caspases. This model
currently is receiving rapidly increasing
experimental support. The first indication
of this pathway emerged when it was
found that Jurkat T-lymphocytes showed
a decrease in mitochondrial respiration
during CD95-induced apoptosis. The
defect in respiration was attributed to a
loss of cytochrome c from mitochondria
as respiration was reinstated by the supply
of exogenous cytochrome c (102). Other
investigators observed that cytochrome c
is released from mitochondria in response
to certain apoptotic stimuli (103-105).
The released cytochrome c induces forma-
tion of a caspase-activating complex in the
presence of dATP (106,107) that com-
prises procaspase-9 bound to Apaf-1 (the
mammalian homolog of Caenorhabditis
elegans CED-4) through a homophilic
interaction involving caspase recruitment
domain motifs. The proteolytic activation
of the proform of caspase-9 to its active
form occurs through an intrinsic mecha-
nism and is followed by the downstream
proteolytic activation of pro-caspase-3
and pro-caspase-7 (108). Recently we
have found that microinjection of
cytochrome c into cells is sufficient to
induce apoptosis (109).
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Several mechanisms have been proposed
to account for the loss of cytochrome c from
mitochondria in apoptosis. In vitro studies
have shown that cytochrome c release can
be induced by agents that cause permeabil-
ity transition, possibly as a result of disrup-
tion of the outer membrane by the swelling
associated with permeability transition
(110,111). However, other reports clearly
demonstrate that cytochrome c is mobilized
from mitochondria prior to or in the com-
plete absence of permeability transition
(105,112) in a mechanism that may
involve Bax, a member of the proapoptotic
Bcl-2 family (113,114). Bcl-2 prevents
cytochrome c release (105), possibly through
its interaction with Bax. More recently a cas-
pase-8-mediated cleavage product of the
BH3-domain-containing Bid has been
reported to efficiently release cytochrome c
from mitochondria, also in the absence of
permeability transition (115,116).

Whether the induction of apoptosis by
Ca2+ signals requires release of cytochrome
c is not yet known. The data by Waring
and Beaver (97) suggest that at least per-
meability transition may not be necessary
for Ca2+-induced apoptosis. The reported
antiapoptotic effects of Bcl-2 on Ca2+_
induced apoptosis are difficult to interpret
because Bcl-2 prevents both cytochrome c
release (105) and permeability transitions
in response to Ca2+ accumulation (91,
117), as well as other effects on Ca2+ sig-
naling (118-120). Interestingly, Bax
recently has been detected in enriched frac-
tions of the pore complex (121). Thus, the
dual effect that Bcl-2 has on mitochon-
dria-preventing cytochrome c release as
well as permeability transition-suggests
the existence of some form of functional or
spatial relationship between cytochrome c
release and permeability transition.

Ca2+-Activated Proteases
and Apoptosis
Many recent studies of apoptosis have
focused on caspases. However, there is con-
siderable evidence that additional proteases,
including serine proteases [for example
(60,122-124)] as well as members of the
calpain family of Ca2+-activated proteases
(125,126), participate in apoptosis. Results
of inhibitory studies indicate that the contri-
bution of calpains to apoptosis appears to be
limited to certain cell types such as thymo-
cytes (126), monocytic U937 cells (125),
cardiac myocytes (127), and neuronal cells
(128-130).

The cellular targets for calpains in
apoptosis are not well known. We know

that fodrin is cleaved by calpains during
tumor necrosis factor-induced apoptosis in
U937 cells (125) and a Ca2+-activated pro-
teolytic system that cleaves lamins exists in
thymocyte nuclei (131).

Recently, calcium has been found to
increase caspase-3 activity in a cell-free sys-
tem when added to nonapoptotic cell
cytosol and to elicit nuclear morphologic
changes and DNA fragmentation (132).
However, the Ca2+-induced processing and
activation of pro-caspase-3 to caspase-3 did
not involve calpains but an N-tosyl-L-
phenyl chloromethyl ketone-sensitive ser-
ine protease. These findings may help not
only to uncover the up-to-now elusive
mechanism of caspase activation in Ca2+-
induced apoptosis but also to position
more precisely the role of serine proteases
in apoptosis.

Ca2+ Pool Emptying
versus [CaQ2] Increase
Several studies have reported that the
removal of extracellular Ca2+ did not pre-
vent apoptosis induced by thapsigargin.
Instead, a much closer correlation between
ER Ca2+ pool emptying and apoptosis was
observed (133-137). Evidence for a causal
relationship between Ca2+ store emptying
and apoptosis is based on several observa-
tions, particularly the ability of Bcl-2 to
antagonize ER Ca2+ pool emptying (120,
133,138), the antiapoptotic effect of the
ER Ca2+-storing protein calreticulin
(139,140), and the ability of high extracel-
lular Ca2+ to restore Ca2+ pools thereby
preventing apoptosis (137).

Depletion of ER Ca2+ stores triggers a
stress condition reflected in a shutdown of
both protein (141,142) and phos-
phatidylserine syntheses (143,144) and the
transcriptional upregulation of several ER
stress proteins that are also chaperones,
including HSP70 (145), BiP (immuno
globulin heavy chain binding protein)/
GRP78 (glucose-regulated protein 78),
GRP94, and ERp29 (145-149). The
induction of the ER stress proteins fol-
lowing ER Ca2+ store emptying requires
among others the transcription factors
CBF/NF-Y, EGR-1, and YY1, which are
activated under these conditions and inter-
act with regulatory elements such as
CCAAT (147,150-152). The significance
of the stress response in the context of
apoptosis is presently unclear, although
recent evidence suggests that some of the
ER stress proteins have a cytoprotective
function rather than being proapoptotic
(153-156). Interestingly, BiP/GRP78 is

also a major Ca2+ storage protein, with
approximately 25% of the ER Ca2+ store
being bound to this protein (157).
Together, the evidence indicates that ER
Ca2+ pool emptying by SERCA inhibitors
and Ca2+ chelators induces ER stress and
apoptosis in numerous cell systems.
However, we still know very little about
how this stress response leads to apoptosis.

Ca2+-lnduced Apoptosis:
Indirect Mechanisms
A major feature of the immune system is
its plasticity, which enables it to respond
rapidly to invading organisms and foreign,
infected, or transformed cells. Clonal
expansion of T lymphocytes that recognize
specific antigens occurs through stimula-
tion of the T-cell antigen receptor complex
with signaling through p21 ras and Rac and
through phospholipase 71. The latter
enzyme mediates the release of InsP3, Ca2+
mobilization, and downstream events
involving calcineurin and nuclear factor of
activated T cells (NF-AT). Once the infec-
tion has been overcome and the foreign or
transformed cells eliminated, clonal expan-
sion must be reversed and the T-lympho-
cyte elimination process occurs by
apoptosis. Recent work has shown that the
apoptotic response is effected by Ca2+ and
calcineurin-mediated upregulation of
CD95 (Fas, APO-1) ligand and TRAILI
(APO-2 ligand), which in turn activate
their death receptors and induce apoptosis
(158-160). Consequently, Ca2+-mediated
apoptosis of lymphocytes does not appear
to involve a direct apoptotic effect of Ca2+
but instead is indirectly mediated through
upregulation of cytokines that activate
plasma membrane death receptors.

Is Ca2+ Involved in All
Forms of Apoptosis?
Many stimuli induce apoptosis in the
absence of any detectable changes in Ca2+
fluxes or [Ca]2+], and therefore no direct
role of Ca2+ signaling is apparent. However,
over the past few years, a number of reports
have appeared in which components of the
Ca2+ homeostatic and signaling machinery
have been identified as important regulators
of apoptosis. For example, ectopic expres-
sion of the Ca2+-binding protein calbindin-
D28K provides protection against a
number of apoptotic stimuli (161,162).
Similarily, the expression of InsP3R3 in
thymocytes, B and T cells is increased
manyfold during apoptosis (163). Pre-
vention of this expression by transfecting
S49 cells with an InsP3R3 antisense
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plasmid antagonized glucocorticoid-
induced apoptosis. More recently, T cells
deficient in InsP3R1 were found to be resis-
tant to a wide variety of apoptotic stimuli
including glucocorticoids, T-cell antigen
receptor complex stimulation, ionizing
radiation, and CD95 (164); CD95-
induced myocyte toxicity has been shown
to require InsP3R (165). Also, Ca2+/
calmodulin-dependent kinase II is stimu-
lated by tumor necrosis factor and ultravio-
let light, and inhibition of the kinase
activity was found to prevent apoptosis
(166). Similarily, the recently discovered
Ca2+/calmodulin-dependent kinase DAP-
kinase induces apoptosis when overex-
pressed and, conversely, cells transfected
with a catalytically inactive form of this
enzyme are resistant to interferon-y induced
apoptosis (167). These observations indi-
cate a more general participation of the
Ca2+ signaling machinery in apoptosis than
was previously thought. However, the mol-
ecular aspects of this participation are yet to
be identified.

Ca2+ as an Antiapoptotic
Signal
Most research on Ca2+ has focused on its
apoptotic properties. Yet, in several models
of apoptosis, Ca2+ has the opposite effect
and can prevent apoptosis. Most striking is
the case of neurons that undergo apoptosis
upon withdrawal of nerve growth factor.
Depolarization of the cells with K+ to open
voltage-operated Ca2+ channels provides
the neurons with a survival signal (168).
These observations led to the postulation
of the Ca2+ set point hypothesis in which a
minimum [Ca2+], is required to maintain
neuron viability (11,169). When [Ca2+] i
moves below or above this set point, apop-
tosis is rapidly induced. The protective
effect of depolarization-induced Ca2+ chan-
nel opening on neuronal cells is mimicked
by thapsigargin (170).

PS exposure
Mitochondria Proteases

Calcineurin - Ca2+ > Phospholipases

NO synthase Protein synthesis
Endonucleases

Figure 5. Some of the intracellular targets in
Ca2+-induced cytotoxicity. Abbreviation: PS, phos-
phatidylserine.

Ca2+ also protects against apoptotic
signals in other cell types including hema-
topoietic cells, macrophages, myeloid
leukemia cells, and neutrophils (171-176).

The mechanism responsible for the pro-
tective action of Ca2+ is undear. In neurons,
protection requires Ca2' influx and appears
to be mediated by calmodulin (177). The
antiapoptotic effect of Ca2+ coincides with
the prevention of caspase activation (178).
Also, Lotem and Sachs (175) found that
extracellular Ca2+ was required in M1
myeloid leukemia cells and that Ca2+
prevented the activation of caspases. The
protective effect of Ca2+ was in this case
abolished by cyclosporin A, suggesting a role
for calcineurin in the mechanism of Ca2+
action. These findings suggest, therefore,
that transcriptional activation and de novo
synthesis of antiapoptotic signals are impor-
tant. An additional possible explanation is
that Ca2+ influx keeps the ER Ca2+ pool
filled, which prevents the complete ER Ca2
pool depletion by the apoptotic stimulus
and the ER stress response.

Conclusions and Perspectives
There is litde doubt that Ca2+ signals par-
ticipate in apoptosis. Given the complexity
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of Ca2+ signaling, it is hardly surprising that
identifying the exact mechanism of Ca2+-
induced apoptosis has proved to be a major
challenge. Not only are we faced with a
large number of potential cellular targets for
Ca2+ action (Figure 5) but also numerous
stimuli inducing Ca2+ signals activate other
cell signaling pathways. The many possibili-
ties of cross-talk between the different sig-
nals add to the complexity of the situation.
This problem is particularly difficult when
dealing with cytotoxic environmental chem-
icals such as prooxidants that can induce
apoptosis by affecting signaling pathways at
multiple levels (179). To add further to the
complexity, Ca2+ can, under some circum-
stances, show antiapoptotic properties.
Interestingly, this dual feature is shared by
several inducers of apoptosis, notably tumor
necrosis factor. A possible consequence of
the complexity of the interactions with the
Ca2+ signaling machinery is that there may
be no reliable universal parameter that could
be used to detect and assess the health risk
associated with exposure to cytotoxic
environmental chemicals.

Two likely targets for the apoptotic
effects of Ca2+ signals have been identified
over the past few years (Figure 6). One is

Direct
pathway

0ool
rn

Iflux Es s

Mitochondria ER stress

,rome c emailit
~hrome c.< Permeability
lease transition

7-

I
Apoptosis

Figure 6. Proposed mechanisms of apoptosis induced by Ca2+ signals. Abbreviations: ER, endoplasmic reticulum;
NF-AT, nuclear factor of activated T cells. Two pathways are recognized, one that is indirect and requires the activa-
tion of death receptors such as CD95 (Fas, APO-1) and a second pathway where Ca2+ is the direct effector of apopto-
sis. In the latter case, the two major targets are the mitochondria and the ER. Further details are given in the text.

31Environmental Health Perspectives * Vol 107, Supplement 1 * February 1999



KASS AND ORRENIUS

mitochondria. There is rapidly increasing
evidence that these play a major role in
some forms of apoptosis. Apoptosis may be
triggered through cytochrome c release and
possibly through (limited?) permeability
transition. The questions of which mecha-
nism is used by Ca2+ and how this is linked
to caspase activation must be addressed.
The other target is the ER, where the emp-
tying of its Ca2+ content induces a form of
cell stress that ultimately leads to apoptosis.
Again, further work is required to interpret
the signals that interconnect ER stress, cas-
pase activation, and apoptosis. The etiol-
ogy of many diseases such as cancer,
neurodegeneration, diabetes, and autoim-
mune diseases has been linked to an
improper regulation of apoptosis, with
considerable evidence for the involvement
of cytotoxic environmental chemicals in
some of these diseases. There is much hope
that a better understanding of the molecu-
lar events in apoptosis will improve
chances to develop better preventive and
therapeutic strategies to control apoptosis
and hence the development of disease.
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